PROGRAMMING

Dialog and Xdialog

IE2) UIHYNO (R|oYINg

You don't need to wade into a graphics programming textbook to add a few simple GUI elements to your
scripts. BY ANKUR KUMAR SHARMA

GUI-based applications, old-fash-

ioned command-line programs often
appear quite boring and user unfriendly.
Wouldn’t you like to add friendly GUI
features to your simple, custom scripts
without a lot of tedious GUI program-
ming? A pair of tools called Dialog [1]
and Xdialog [2] can add GUI-like desk-
top widgets to your programs. You can
use Dialog and Xdialog from C, C++, Py-
thon, Ruby, Perl, or Bash.

Dialog uses the curses/ncurses librar-

ies [3] to create various interactive con-

I n the age of colorful and convenient

rd=12ter Drputshex

Figure 1: Dialog and Xdialog help.

cont iy b gt e s i s

trols or widgets. As you’ll learn in this.
article, you can add these widgets to
your existing command-line applications
without any serious programming effort.

Xdialog is a counterpart of Dialog that
produces various widgets in an X Win-
dow environment. Because Xdialog uses
the Gtk+ library, it integrates easily with
the Gnome desktop environment.

Later in the article, I'll describe some
alternative tools for adding widgets to
your scripts, such as Gtkdialog [4],
Whiptail, and Zenity. If you are a KDE
user, you might want to consider using
Kdialog [5], which
serves a similar
role for the KDE
desktop environ-
ment.

Getting
Started

Both Dialog and
Xdialog come pre-
installed on Puppy
Linux 4.2.1. On
Ubuntu 9.10, in-
stall Dialog as fol-
lows:

o Jinpueston)

sudo apt-get install dialog

To build Dialog from source code, you
first have to build the ncurses library be-
cause Dialog requires ncurses source
headers. The latest source version from
the Dialog website is 1.1-20080819, and
the same version string is shown when
you type dialog at the command line.
Setting up Xdialog requires a little
more work. In Ubuntu 9.10, I had to in-
stall Xdialog from source because [
couldn’t find a candidate in the Ubuntu

" development@ankar-laptop; ~/DevelopmentShel

This is just an }
infobox widget

from dialog.

Boo RIS d‘alug__xdmlug | 45 [deveclopment... | i deve T

Fiqure 2: A simple infobox widget.

e

This is a msgbox

widget from
dialog.

SEE

i Atticles - Fite Brow... | g develo

Figure 3: Msgbox widget with backtitle and
title common options.

9.10 repository. To install Xdialog from
source, download and install the follow-
ing .deb packages in this order:

libgtkl.2-common_1.2.10-18_all.deb
1ibglibl.2 1.2.10-10.12
buildl_amds4.deb
libgtkl.2_1.2,10-18_amdé4.deb
libglibl.2-dev_1.2.10-2
10.1buildl_amdét.deb
libgtkl.2-dev_1.2.10-18_amdé4.deb

(Note that Xdialog requires the 1.2 series
of the Gtk library.) After installing the
preceding dependency packages, down-
load the latest Xdialog source code from
the Xdialog website [2], uncompress the
TAR archive, and move to the source di-
rectory by typing:

tar -jxvf Xdialog-2.3.1.tar.bz2
cd Xdialog-2.3.1

~ developrient@ankur-laptop? ~/Development/shell/AWol

Figure 4: Pause widget with color common
option.

To finally build and install Xdialog, enter
the following commands:

. feonfigure
make
sudo make install

Now, if you type Xdialog at the com-
mand line, an Xdialog widget containing
help contents appears, as shown in Fig-
ure I.

How to Use Dialog

Think of Dialog as nothing more than a
shell command. The command selects a
Dialog widget and specifies a number of
options. The general form is:

dialog <common options> 2

widget <widget options>

The common options are optional set-
tings that modify the appearance and be-
havior of the widgets.

The widget options are combinations
of required and optional settings to cre-
ate widgets. In the man pages, the wid-
get options are referred to as box op-
tions.

If you type man dialog, you will see
the Help screen shown in Figure 1. Some
of the most important common options
are as follows:
® —backtitle titlestring: The background

canvas of dialog widgets usually

doesn’t consist of any text, but this
common option lets you show some
text on the background canvas.

e -title titlestring: Add some title text to
the widget.

¢ -stdout: Some of the widgets that pro-
vide output write their output to
screen only by default. If you want to
gather that output without writing it to
screen, use this option.

e -—-begin ypos xpos: By default, all the
widgets are positioned at the center of
the terminal window, but you can
change this default behavior by using
this option to
specify the start-

Dialog and Xdialog PROGRAMMING

e —sleep sec: Inserts a delay for the spec-
ified number of seconds.

® --no-shadow: By default, a shadow is
shown to the right and bottom of a
widget to create an illusion of depth.
You can turn off the shadow using this
common option.

e —colors: Change video attributes of the
title text.

The latest version of Dialog provides a

large collection of widgets (see the box

labeled “Dialog Widgets.”)
To get started with Dialog’s infobox

widget, type the following line:

dialog --infobox "This is just 2

an infobox widget from dialog." 0 ©

As shown in Figure 2, you will have cre-
ated an information box widget. After
creating the infobox widget, the dialog
returns immediately to the command
prompt, which is the default behavior of
this kind of widget. The only purpose of
the widget is to show sorme informa-
tional text.

The preceding command included two
0Os for the height and width of the wid-
gel. If you pass in zeros, Dialog takes
care of defining the height and width. So
0 0 for height and width are very safe
values most of the time.

This infobox widget was created with-
out any title text or a background. To
add some background and widget title
text, enter:

dialog --backtitle "Message Box" 2
--title msgbox --msgbox "This is a 2
msgbox widget from dialog." 0 0

Now you can see a background title and
widget title for the msghox widget (Fig-
ure 3). Also, if you press the Esc or Enter
key (or click OK) the dialog returns.
Until now, you have only seen the bor-
ing default colors for different texts in di-
alog widgets. To change the color attri-
butes passed to Dialog, you simply need

Dialog Widgets

ing y and x dis- = 3 i o Ee totlc '
vaniee Brom e I-aiog lets you spice up your scripts with any of the following |
widgets. |
tol,j—kﬁt COEhEL Calendar checklist dselect edithox '
® —-fimeout sec: form fselect gauge infobox l
Specifies interval inputbox menu mixedform mixedgauge
in seconds after msgbox passwordbox passwordform pause 1
which the widget progressbox radiolist tailbox tailboxbg
textbox timebox yesno I
returns. ; 3 {

RAMMING

" development@ankiir-laptop: ={Development/SHEWorks

ralendar
Please select a date

Month Year

tjanuary [2am

_ sun Mon Tue Wed Thu Fri Sat
1 2

14
W 19 28 21
25 26 27 28 29
1

{=_dialog xdialogodt-0.. @ |

Figure 5: A calendar widget with an extra
button.

< Applications Places System

g Tapmbay’

Please input something you
like

irxnss itz 0

< 0K «tancel> B}

| . dialog.

& & YouTube - Enya & Emg | Ly Articles - File Browser

Figure 6: Inputbox widget with beqin and no-
shadow common options.

to embed \Z sequences with the differ-
ent texts that are passed to Dialog, along
with the --colors common option, as fol-
lows:

dialog --colors --backtitle 2@
"\Zr\ZlPause\Zn" --title =
"\Zu\Z5pause\Zn" --pause @
"\Zb\Z6This is a pause widget ¥
from dialog." 10 20 15

This time you can see some colorful text
in and around the pause widget shown
in Figure 4. A pause widget shows a
meter bar that keeps on decreasing with
every elapsed second.

If the Esc key is not pressed, or either
of the OK or Carncel buttens is not
pressed or clicked during the remaining
seconds, the pause widget returns when
the timeout value passed to the widget
has elapsed. The text attributes and
color values for embedded \Z sequences
in title strings are as follows:

Dialog and Xdialog

1 reverse
: bold

: underline

: restore normal settings
i black

. red

. green

: yellow

¢ blue

: magenta

: cyan

N Mo FE W N O B g O o

: white

You can also change the default titles for
the OK and Cancel buttons or display an
extra button with additional text. Enter
the following command to see these fea-
tures in action :

dialog --backtitle Calendar 2
--title calendar --extra-button Z#
--gxtra-laebel "Extra step" 2
--ok-label "Ok computer" 2
--exit-label "Bye bye" 2
--calendar "Please select &

a date" 0 O

See Figure 5 for a view of this widget.
You can move between the different sub-
windows of the calendar widget using
the Tab key. If you select, press, or click

any of the buttons except the Esc key or
Cancel button, you will see that the se-
lected date is printed on the widget it-
self. This is the default behavior of all
the dialog widgets that return some
value. You can change this behavior
using the --stdout common option.

You might also want to specify the lo-
cation of the widget and turn off the
widget shadow:

dialog --no-shadow --begin 4 4 72
--backtitle "Input Box" 2
--title inputbox --inputbox 2

"Please enter something 2
you like" 0 0 "FLOSS rulz..."

The resulting widget (Figure 6) is drawn
at the location specified with the —begin
option and without any widget shadow
(as tweaked by the --no-shadow option).
The inputbox widget shows a default
string provided with the command, but
you can change this string by using the
Delete or Backspace key and entering
the desired input.

Rather than entering the complete
commands at the command line, you
can also specify a common option to
read Dialog parameters from a file. The
-file option specifies a filename:

+ = Applications Places System

Edit View Efmlal Help

e
wultiple
widge

gevelopmentankur - Laptop: 5§

@ @ searchresul. | . Dialog Xcial . cialog xdhal g3 Idevelopme..

7 " developmentankiiriaptop: =

vl 3 % BJ Wejan19, 257 aM

™ figurel2 ()., . [dialogpy(.

Figure 7: Multiple dialog widgets.

Listing 1: Adding add-widget

01 dialog --backtitle "Multiple dialog widgets" --begin 4 4 --title msgboxl
~--msgbox First 0 0 \

o2 -—and-widget --begin 10 10 --title msgbox2 --msgbox Second 0 0 \

03 --and-widget --begin 16 16 --title msgbox8 --msgbox Third 0 0 \

oy ~--and-widget -begin 20 40 --title infoboxl --infobox "There are
miltiple widgets." 0 0 \

08 --and-widget -begin 20 25 --tile infobox2 --infoboz "I'm here too."
Qg0

dialog --file paramfile

where parafile contains other dialog pa-
rameters. You can also chain various
widgets using the —and-widget common
option. The commands in Listing 1 pro-
duce the widgets shown in Figure 7,

Using Dialog in Shell
Scripts
To incorporate Dialog widgets, just add
the Dialog commands to your scripts.
The widget returns a value for further
processing, as well as a return status
that lets you determine the keyboard or
mouse action performed on the widget.
To gather the value returned by a wid-
get, add the --stdout option to the dialog
command line and use the command
substitution mechanism of shell scripts.
To determine the kind of action taken on
a widget, you have to examine the built-

_ Dialog and Xdialog PROGRAMMING

in shell variable ¢, which returns the exit
status of the previous command.

The script in Listing 2 combines these
concepts to incorporate some Dialog
widgets. This script presents a menu
with various options, and information is
displayed on the basis of the option cho-
sen. See Figures 8 and 9 for shots of the
widgets referenced in Listing 2.

Dialog widgets have turned this other-
wise boring text-based shell script into
an appealing GUI-based script without
any GUI programming.

Xdialog

Xdialog provides a fuller range of GUI
options and integrates more readily with
the Gnome desktop environment. The
two apps are similar encugh that you
can apply your working knowledge of
Dialog. The general form of the Xdialog
command is:

Listing 2: Widget in Your Script

"g'\}'iniifnéiit@aﬁur-'laptop_; ~/Development/ShellWorks

i
proceed

%E?’ﬁjg
005€ Diréctory

Show timebox

BN E <cancei>
PO

ipyth... Adva.. | Besh. | libmr. | .5 Docu. | . did

Figure 8: Menu widget displayed through a
shell script.

Xdialog 2
<common options> =
<{transient options» 2

widget <widget options>

01 #! /usr/bin/env bash
o2

03 # variables to hold command and
commen options.

04 dlg=dialog

05 stdo=--stdout

06 titl---title

07 titlbg=--backtitle
o8

09 # function to handle open file
choice.

10 fileselect() {

T

12 file=%$(%dlg $stdo $titlbg "Menu
choice was file selection
dialog" $titl "Select file™

13 -~-fgselect ~ 0 O

14 3

15

16 if [$7 -eq O]

17 then

18 $dlg $titlbg "Selected file
content" $titl $file -textbox
$file 0 O

19 fi

20

21 }

22

23 # function to handle chocse directory
choice.

24 dirseleect() {
25

26 directory=$(%dlg $stdo $titlbg
"Menu choice was directory
selection dialeg" $titl "Select

directory™ \

27 --dselect ~ 0 O

28 i)

29

30 if [$? -eq O]

31 then

32 $dlg stitlbg "Selected

directory info" $titl
"Directory Info" \

33 ~=infobox "Your chosen
directory is $directory"
0o a

34 £

35

36 }

37

38 # function to handle show timebox
choice.

392 timebox() {

40
41 time=%$($dlg $stdo $titlbg "Menu
choice was Time Box." $titl
"Select time" \
42 --timebox "Choose your
favourite time" 0 0
a3)
4y
ug if [$? -eq 0]
46 then
47 $dlg $titlbg "Selected time
info" $titl "Time Info" \
48 ~--infobox "Your favourite
time is : $time"” 0 0
49 £i
50

51 }
52
53 # menu widget to show various
choices.
54 choice=$($dlg $stdo stitlbg "Dialog
usage in shell script" $titl "Action

menu"

55 --mena "Make a choice to proceed"
000
\

56 1 "Open file" N\

57 2 "Choose directory” X

58 3 "Show timebox"

59 3

60

61 # we are interested only in Ok button

event.
62 If [$? -eq O]
63 then

64

65 # now handle the selcted choice.

66 if ["$ehoice” = U3V 1§
87 then

68 fileselect

69 elif ["$choice" = 2"]
70 then

2T dirselect

72 elif [“$choice" = "3"]
73 then

74 timebox

75 fi

76

77 <end of shell script code>

PROGRAMMING

‘Gevelopmientdankur-iaptop: ~/Dawelopment/shell Works

A)
£ dig=dintog

Stges--stdout

Hitl=--title

Titlbg=--eckiitle

junciien ta handle epen file choice.
Jiteselect(} {

Fikessisdly $sido Stitlhg “Menu choice was £ile selection dialog® stitl ~select file* \
- feel ae

etk =

ifE 4T eqa }
than
$dlg sTitliy “Selected file content” Statl $file A
- -~texthax $tile 8 &
bs
funttion to handie open directory chiice.
dirselecti} {

SLE L S S G

driry=5{5dig _fgtfdu 3ritlbg "Henu chaice wos directary seléction dialeg” Stitt ~Select directory™ %
--deelect - 4 @

AT L P eyie]
then
sdlg Stitlbg “Selected directory infe* STl “Birectory Info¥ \
-~iffobox “Your choden directory ds : $drtry* 90
i
b
function te handle tiseox chaice,

<t hb

| libfar.. | Docr

© diolo. Py devel m devel.. SENTGRIONIN |

In the preceding command, transient op-
tions refers to some of the Dialog op-
tions, plus a few additional options asso-
ciated with Xdialog.

If Xdialog is installed on your system,
you can explore a few of the Xdialog
widgets with the following commands:

=

Xdialog --backtitle "colorsel" 2
--title "Color Selection Widget" 2
--colorsel "Choose your favourite 2
color" 0 0 123 234 89

¥dislog --backtitle "fontsel" ¥
--title "Font Selection Widget" 2
L ~-fontsel "times 12" 0 0

Figure 9: The textbox widget displaying the contents of a selected file.

Xdislog --backtitle "3rangebox" 2

Listing 3: Widgets in Python

01 <start of python code>

o2

03 #! fusr/bin/env python2.s

ok

05 from subprocess import Popern, PIPE, STDOUT
08

07 # dictionary to hold various dialog and Xdialog commands.

08 dwdgtsatrb = {

09 'dlgpswd’ 'dialog|--stdout|--insecure
--backtitle|PasswordBozWidget |
~-title|passwordbox|
~--pagswordbox |Enter the key|o|0',

10 'xdlgnme" 'Xdialog|--title|Xinputbox|
--inputbox|Enter your name|Q|0",

11 'xdlgdob' 'Xdialog|--title|Xcalendar|
--calendar|Select your DOB|0|0',

12 ‘dlgtme’ 'dialog|--stdout|
~-backtitle|TimeBoxWidget | --title|timebox]
--timebox|Select time of birth|c|o’

13 'xmsg! '¥dialog|--title|XmagBox|
--msgbox |message|o|0’',

14 3

15

16

17 def execute(scommand):

18 et

198 Routine to execute a command string and return
(output, error, status) of the command.

20 §ry

21

2a 1 = scommand.split('|"')

23 p = Popen(l, stdout=PIPE, gtderr=STDOUT)

24 toe = p.communicate()

28

26 return (toe[0], toe[l1], p.returncode)

27

28 def main():
29 v
30 Application driver routine.

31 (N

32
a3
34
38
38
37
38
32
40
41
42
43
44
45
48
Lo
43
4
50
51

52

53
54

55
56
57
58
59
60
61
62
63

if

tpswd = execute(dwdgtsatrb['dlgpswd'])

tnme = ()
tdob = ()

ttme = ()

if 'lpmrockz' == tpswd[0].strip():

if not tpswdf2]:

tnme = execute(dwdgtsatrb['xdignme'])

if not tnme[2]:

tdob = execute(dwdgtsatrb[’xzdlgdob'])

if not tdob[2]:

ttme = execute(dwdgtsatrb['dlgtme'])

if not ttme[2]:
smsg = ("HL ' + tome[0].strip() + '"\n' +
'"Your DOB is : ' + tdob[0].strip()
+ "\n' +
'Time of birth is
strip() + "\n' =+

'+ ttme[0].

'LPM wishes you the best.')

execute(dwdgtsatrb['xmsg'].
replace('message’, smsg))

else:
smsg = 'Incorrect password, better luck next time.'

execute(dwdgtsatrb['zmsg'].replace('message', smsg))

£ ' _main_ ' == _ _name_ :

main()

64 <end of python code>

Dialog and Xdialog PROGRAMMING

of Dialog and Xdialog widgets in the
screenshots.

Whiptail, Zenity, X
Message, and Gtkdialog,
Several other Linux apps provide func-
tionality similar to Dialog and Xdialog.
Ubuntu 9.10 comes with a utility known
L 1ot %ot S il) as Whiptail that is based on the Newt li-
e | e e B Kie vt et i | brary. I found Whiptail very limiting

I pdingobsts > -<min2> <max2> <def2>

| Italic

e o | R | with regard to the widgets offered and
W ecsimnae. ¥ - j the configuration options provided.
3 e i ul %‘i’zﬁn:g” Although Whiptail provides fewer
3 trevew e widgets and options than Dialog, the
g [| widgets that are available include a yes/
s i no box, a menu box, an input box, a
MEEAEEL | O TR Ve o %3 i message box, a text box, an info box, a
Figure 10: Some extra widgets provided by Xdialog. checklist box, a radiolist box, a gauge
box, and a password box.
~~title "3 Range Selection Widget" ® separate text and graphic versions of the To see the Whiptail password widget,
--3rangesbox "Select your values" 2 program. You can also use Dialog and type the following command:
0 0 first 10 56 34 second 2 39 56 2 Xdialog for rapid prototying a GUI-based
third 4 67 45 application. whiptail --fb --title ®
The Python script in Listing 3 inte- "Whiptail Password Widget" 2
Some new widgets provided by Xdialog grates various widgets from Dialog and --passwordbox 2
are shown in Figure 10. Note that the Xdialog. First, it asks you the password "Enter your password”" 10 0
Xdialog widgets are more like the true key ({pmrockz in this case), and then,
graphical elements found in desktop en- after asking for some additional input, it Another utility known as Zenity [6] also
vironments. provides a message at the end. came preinstalled with Ubuntu 9.10. The
Please note that, in the dictionary of purpose of Zenity is to show Gtk+ dia-
Dialog and Xdialog with Dialog and Xdialog commands, the vari- log boxes from command-line or shell
Other Languages ous parameters are separated by a pipe scripts. Zenity provides some useful
If you are using any of the programming character (|) to allow spaces in the vari- Gtk+ widgets. The following commands
languages that support calling external ous strings passed. Copy and paste this give you a glimpse of Zenity in action:
executables, you can use Dialog and Xdi- Python code to a file and run that file
alog. This means you can make use of with the command python filename.py. zenity --info -text=2
Dialog and Xdialog widgets from C, You can also run the file by typing ./file- "This is an info from Zenity."
C++, Python, Perl, Ruby, and other lan- name.py after making the file executable
guages. by issuing the command chmod u + x zenity --warning -text=%
By using Dialog and Xdialog from filename.py. "Thig is a warning from Zenity."
these languages, you avoid the compli- The displays resulting after the execu-
cated, time-consuming GUI program- tion of the code in Listing 3 is shown in zenity --question -text=%
ming that is associated with maintaining Figures 11 and 12. Note the coexistence "This is a question from Zenity."

Figure 11: Dialog passwordbox and Xdialog inputbox widgets in a Figure 12: Dialog timebox and Xdialog msgbox widgets in the python
Python script. script.

PROGRAMMING Dialog and Xdialog

w4 4 T Sl S1EAN O CRE0OTAIT

anfo - texteTnis 15 an tnfo from Zandty ©

0
121 e2m
develazmengankur Laptop -4]

B seveomesipae | O StveseneoiGenin .

Figure 13: Whiptail and Zenity command output. Figure 14: Gtkdialog and X Message command output.
The widgets that were created with the
Whiptail and Zenity tools are shown in
Figure 13.

The number of widgets and configura-
tion options provided with Zenity is
more limited than for the Xdialog set,
but Zenity is much more useful than
Whiptail.

Other tools that provide quick GUI fea-

involves much more work than other
utilities that create graphical widgets for
the desktop, but it is still easier than GUI
programming.

Listing 4 shows an example of a script
with Gtkdialog. Save the code in Listing
4 to a file with the .sh extension, then
change the permissions with the com-

xmessage -file ~/.bashrc 2
-buttons "Ck:1l, Cancel:2, @

Help:3" -print -nesrmouse

The -file option used here reads a mes-
sage from the file that’s been supplied.
On clicking a button, the corresponding
return code is returned from the xmes-

sage command.

mand chmod u + x filename.sh and issue

tures from a script include X Message
and Gtkdialog, both of which I found on
Puppy Linux 4.2.1.

X Message [7] is actually a command
that generates very limited graphical GUI

Gtkdialog [4] is fairly different from
the other utilities I have discussed so far.
This tool creates various widgets with
the use of an XML-like description,
known as the dialog description lan-

the command ./filename.sh to see Gtkdi-
alog in action.

The output of the Gtkdialog shell
script (as well as an example of the alter-
native X Message tool) are shown in Fig-

widgets, in that it only shows a message guage. Through this description lan- ure 14.
with user-defined buttons. Typing the guage, you can create very complex dia- .
following command shows X Message in ~ log boxes containing other widgets and Conclusion

action: boxes. The downside is that Gtkdialog Dialog, Xdialog, Whiptail, Zenity, Gtkdi-
alog, and X Message can transform any
command-line utility into a user-friendly
GUI-based application.

Without even a single bit of conven-
tional GUI programming, you can add
some sophisticated GUI features to your

applications. M

Listing 4: Using Gtkdialog

01 <start of shell script>
02

03 #! /usr/bin/env bash
ou
05 # dialog discription assigned to an environmental variable.

06 Export MAIN_DIALOG='

o7 <vbox>
08 <text wrap="true" width-chars="10" > [1]1 Dialog home page:
09 <label>Time has gone, song is over, thought I had something more http://invisible-island.net/dialog/

i B G [2] Xdialog home page:
= Sy http://xdialog.dyns.net/
11 <text use-markup="true"> = o “-'/“-'- e
12 <label>"FLOSS rulz my friend!!!"</label> Bl netrscs: ftip; .g:?u.org

software/ncurses/ncurses. html

13 <ftext>
1u S hoEs {4] gtkdialog fw-me page: ht?p;/ﬂinux_
i oD BhEc/buttons pte.hu/~pipas/gtkdialog/index.html
16 <button cancel></button> [5] Kdialog tutorial: http:/techbase.kde.
7 </hbox> org/Development/Tutorials/Shell_
18 < /vhoR> Scrr'pﬁng_wfth_KDE_Dia!ogs#
19 ' Introduction_and_Scope
20 gtkdialog2 --program=MATN_DIALGG [_6] Zenity: hrtp:f/h've:.gpqme.org/Zenfty
21 [71 X Message: http;/sourceforge.net/

22 <end of shell seript> projects/xmsgd/

