Teét your Eodeﬁ”azn;d SaVe pfqg

some interesting debugging options. sy Ankur kumar Sharma

and C++ are compiled lan-
guages: The source code is
translated to the machine code
of the hardware platform in a
complete binary file. To run any C or
C++ program, you first need to write the
source code, then compile and link the
code to create an executable. Every time
you make even a small change, you have
1o repeat this code/modify/compile/
link/run cycle. For small programs, the
compile/link step is trivial, but for even
a medium-size program, this step is very
time consuming and boring. A large C or
C++ program can take several hours to
compile and link. This process is espe-
cially annoying if you are a beginner
who is prone to small errors, or even if

(| INTHE LAB

g

| [used Puppy: Linux 5.0 and Ubuntu 9.10
64-bit deskiop edition to test the C and
C++ code mentioned in this article.

you are a seasoned veteran who is inter-
ested in rapid prototyping.

In contrast, scripting languages like
Python, Ruby, and Perl don’t require a
compile/link step. Scripting languages
also provide the opportunity to experi-
ment by typing program code into the in-
teractive shell to see the results. In many
cases, however, C and C++ are still bet-
ter long-term solutions for compatibility
and performance reasons.

As you might guess, having some way
to run your C/C++ code directly - with-
out the compile/link step - in an interac-
tive shell can provide significant benefits
for testing and prototyping. The open
source community has responded to this
call by providing several options for run-
ning C/C++ code in an interpreted envi-
ronment.

Interpret Modes
C and C++ interpreters can work in ei-
ther interactive mode or batch mode. In-

ng time with C and C-;-+ 1

Many programming dialects advertise the convenience of an interpreted language with the
power of C and C++. But if you really want interpreted C and C++, why not just use a C/C++
interpreter? A few C/C++ compilers support interpreted processing for faster coding and

erpreters

teractive mode is like programming
shells of various scripting languages:
You type C and C++ program statements
at the interpreter prompt one at a time
and see the corresponding execution re-
sults. In batch mode, you run single or
multiple C/C++ source files through an
interpreter. Interactive mode is more
suitable for experimentation with short
code snippets, and batch mode is better
when the source code is long or orga-
nized in multiple files.

Tcc, A Compiler with
Direct C Code Run

Tee [1], which stands for Tiny C Com-
piler, is available for both 32- and 64-bit
target platforms. This tiny dynamo,
known as a fast and efficient C compiler
with a small footprint, is heading toward
full ISO99 compliance and can run any C
code directly without any compile/link
step. Tce comes pre-instailed as the de-
fault C compiler in Damn Small Linux. It

| 4 o

C and C++ Interpreters

‘zile Edit View Terminal Help

‘rlchhusgeek:;@ankur-laptcﬁ'};}bééu-ments,’ArT.icles[C_Intarpreters/LMs tece stack.c -run teststack.c

'stack.c:38: warning: assignment from incompatible pointer type
|stack.c:76: warning: assignment from incompatible pointer type
‘stack.c:ss: warning: assignment from incompatible pointer type
| AR

| 1. Push an integer,

| 2. Pop an integer,

3. Show the stack,

4. Exit.

R s s

Enter a choice : 1

Enter the integer to push : 235678
| A

! 1. Push an integer,

| 2. Pop an integer,

\ 3. Show the stack,

| 4. Exit.

| R

| Enter a choice : 1

i Enter the integer to push : 34567889
e

i 1. Push an integer,
2. Pop an integer,
| 3. Show the stack,
| 4. Exit.
| R
| Enter a choice : 3
|1: 34567389
2 : 235678
1. Push an integer,
2. Pop an integer.
| 3. Show the stack,
| 4. Exit.
| B R
| Enter a choice : 2
| The integer popped
| e
1. Push an integer,
| 2. Pop an integer,
| 3. Show the stack,

: 34567889

| |fi|e Edit View Terminal

| |
| |char *sLP64

|
|int i = sizeof(int);
;int 1 = sizeof(long);

printf({"%s\n", sLP64};
lelse
printf{"zs\n", sILP32);

|

|

|

| |

i Iif(L 1= 1)
|

printf(" strlen(sLP64)
printf(" sizeof(sILP32)

Help
| irichnusgeeks@ankur-laptop:~/Documents/Articles/C_Interpreters/LM$ cat testpicoc.c

= " The platform is €4 bit.*;
|char =sIlP32 = " The platform is 32 bit.";

: %u\n", strlen(sLP64)};
: su\n*, sizeof(sILP32));

richnusgeeks@ankur-laptop:~/Documents/Articles/C Interpreters/LMS picoc testpicoc.c

The platform is 64 bit.
strlen(sLP64) : 24
sizeof(sILP32) : 8

richnusgeeks@ankur-laptop:~/Documents/Articles/C_Interpreters/LMs [

Figure 2: PicoC running in batch interactive mode.

|

\

\

\

|

code contained in
1 a single file di-

| rectly as a script if
| vou add the line

|

S ¢
rocation_of

| tec/tee -runat

i
!

Figure 1: Interpretation of multifile C code through Tec.

doesn’t have an interactive shell, but it
can run C code organized in single or
multiple C source files.

To build and install Tcc, the prerequi-
site is GCC. To begin, download the lat-
est Tcc source tarball from the project
page, then issue the following com-
mands in a text console:

tar zxvfi tec-version.tar.bz2

cd tec-version

Next, issue the following commands to
build and install Tce:

. Jeonfigure
nake

sudo make install

If everything goes well, typing tcc will
bring up some help text. To test the di-
rect C code run feature, run the code in
Listing 1 by typing the command tcc
-run hellotec.c. Tee can also run any C

i LISTING 1: hellotcc.c

01 #include <stdio.h>
02

03 int main(int arge, cher *argv[])

ou {

05

06 printf(™\n Hello to FOSS from
Lop! L INE")

07 return 0;

o8

0o }

the top of the
source file and
make the source file executable with the
command chmod utx filename.c .

Tcc can read code from the standard
input instead of from a source file. Type
the following in a text console to see this
feature of Tcc in action:

echo '‘main()fprintf("\n"); @
system{"uname -g"}; 2

printf("\n");}' | tec -run -

To run C code organized in multiple
files, the - run option could come after
one or more files in the list. For instance,
you could type tce stack.c -run test-
stack.c or tce teststack.c stack.c

run, but Tec throws an error if you type
tce -run teststack.c stack.c.

Figure 1 shows the output produced
by Tcc running C code directly. The files
used for this example are available at the
Linux Magazine website [2]. Note that
Tcc is indicating some warnings even in
the direct code run mede. So you can re-
alize the convenience and saving in ef-
forts when running both trivial as well
as complicated C programs through Tcc’s
direct code run feature.

PicoC, a Minimal
Interactive C Code
Interpreter

PicoC [3] is a very small footprint inter-
active C code interpreter. It offers few
constructs of the C language and is
mainly targeted toward small devices
like embedded systems. Still, I found

PicoC useful for simple to moderately
difficult C code interpretation. The con-
structs supported by PicoC are built in as
commands, so you don’t have to include
standard header files while working with
this tiny compiler.

To build PicoC from source code, you
need GCC. To build PicoC, download the
latest source tarball from the project
page and issue the following commands:

tar jxvi picoc-version.tar.bz2

cd picoc-version

Now type make to build PicoC, and, op-
tionally, make test to run the tests that
come with the package. If compilation
completes with no errors, you should see
a picac executable in the source direc-
tory. You have to cepy PicoC to any of
the standard locations, like /usr/local/
bin or add the absolute path of the direc-
tory to .bashrc:

export PATH=path_of_picoc_directory:$PATH

LISTING 2: testpicoc.c

01 char ¥sLPsd

= " The platform is 64
bit.";

02 char *sILP32 = " The platform is 32
Bit. ",

03

04 int i = sizeof(int);

0% int 1 = sizeof(long);

06

gF ig(z 1= i)

for:d printf("%s\n", sLB&u);
09 else

10 printf("%s\n”, sILP32);
11

12 printf(" strlen(sLP6&)
strlen(sLPs4));

H b i

13 printf(" sizeof(sILP32) : %u\n",
sizeof (sILP32));

I

BEE. Cand C+

LY

Interpreters

The tests subdirectory in the PicoC
source directory contains many exam-
ples of the C language constructs sup-
ported by PicoC. To get a taste of the in-
teractive mode functionality, type picoc
-1 in a text console and enter the code in
Listing 2 at the PicoC prompt. Or, to in-
terpret the file in batch mode, type picoc
testpicoc,c. Figure 2 shows a screen-
shot of PicoC running in batch mode.

EiC, an Extensible
Interactive C Code
Interpreter
EiC [4] stands for Extensible Interactive
C. It is an interactive C code interpreter
that can communicate with external ap-
plications. EiC provides some very useful
features, like pointer safety, and some
extra C programming constructs that are
not found in other C code interpreters.
Download the source tarball from the
project page and issue the following
commands:

tar zxzvi EiCsrc-version.tar.gz

ed EiC-version
The following builds and installs EiC:

./eonfig/makeconfig

meke install

[LISTING 3: testscript.eic

1 #! fusr/local/binfeic ~f
02
03 #include stdio.h
at
05 unsigned mystrlen(char *sStr) {
06
Q7 unsigned 1;
08
09 for(1l=0; *s8tr; ++sStr, ++1);
10
11 return 1;
12
13 }
14

15 void mystrcpy(char ¥sSre, char

*ksDst) {
18
17 while(*sDgt++ = ¥aSrc++);
18
19 }
20

21 dint main(}

22 {

If everything goes well, add the follow-
ing FiC-specific setting in .bashrc to fi-
nalize the configuration:

EICBASE=path_of_£iC_directory
export HOMEofEiC=$SEICBASE

Start EiC by typing eic in a text console;
by default, it starts in interactive mode,
where you can type various C code state-
ments and see the corresponding results
instantly. (Type eic -h to view some
text-based help.)

EiC can run in a scripting mode in ad-
dition to the interactive and batch
modes. Scripting mode lets you write a C
program as you would a shell script; you
can put various C statements in a file
with or without a main() function. To get
a feeling for EiC scripting mode, run the
code shown in Listing 3 by making the
file executable with the command chmod
utx testscript.eic and then typing ./
testscript.eic in a text console.

In Listing 3, note #include stdio.h.
With EiC you can alternatively include
the headers without angle brackets.

Now I'll hack into some unique fea-
tures not found with other C code inter-
preters. EiC can memorize all the C code
statements entered on its interactive
prompt. Actually, EiC creates a file called

23
24 char *sSre = "This is source
string.";
a5 char sDst[] = "This is
destinatien string.";
28
27 printf("\n Before mystrecpy()
=>\n"};
28 printf(" sSrc : %s\n", sSrc);
29 printf(" sDst : %s\n", sDst);
30
31 if{mystrlen(sDst) >
mystrlen{sSrc))
32 mystrepy(sSre, sDst);
33
a4 printf("\n After mystrcpy()
=>\n");
35 printf("™ sSrc : %s\n", ssSre);
36 printf(” sDst : %s\n", sDst);
37
a8 return 0;
29
40 }

EiChist.1st, where it stores all the com-
mands that were interpreted without
error. By default, this file is created again
in the directory every time EiC is started
in the interactive mode, but you can
alter this behavior by launching EiC with
the -n switch. If you launch FiC with the
-r switch, it is initialized by interpreting
all the commands previously recorded in
EiChist.1st. To reinitialize EiC without
wiping out the old EiChist. st file, you
can also combine these two switches
with -nr. Using this feature of EiC, you
can continue from the state you left last
time. Edit £1Chist.1st manually to start
EiC from a customized state, or start EiC
in interactive mode with the -R switch.
EiC asks about re-entering every com-
mand from EiChist.1st by choosing ei-
ther ¥ (yes), N (no), or E (edit). You can
drop or edit previous C code statements
entered at the EiC interactive prompt one
by one.

Another distinct feature of EiC is that
it is pointer safe. Anytime you try to vio-
late a stack or heap memory limits
through pointers, EiC catches them and
throws errors. Enter the C statements
shown in Listing 4 in interactive mode,
interpret pointertest.c in batch mode,
or run the file in scripting mode and see
how EiC throws errors and stops on the
first pointer violation.

Before building and distributing a final
version, you can verify your C programs
against various memory limits through
EiC’s pointer safety feature. By doing
this, you will save a lot of time debug-
ging very hard-to-find and hard-to-fix
memory and pointer bugs. The pointer
safety feature of EiC is turned on by de-
fault, but you can turn it off feature with
the modifier unsafe. So, if you replace
int *pPtr by int * unsafe pPir inthe
pointertest.c file, EiC proceeds without
any errors regarding pPtr(79]. The un-
safe pointer feature in EiC is useful when
you interact with external, compiled C
components.

CINT, a Heavyweight C
and C++ Intérpreter

Now comes the big daddy of all the C in-
terpreters. CINT is the C and C++ code
interpretation component of the object-
oriented data analysis package ROOT
[5], although it can be used as a stand-
alone application. According to the CINT
man page, CINT covers a whopping 95%

of ANSI C and 90% of C++ features.
CINT alsc provides features similar to
those of GDB to debug the interpreted
source code. CINT scripts have the abil-
ity to communicate with compiled com-
ponents and external applications.

If you don’t mind the overhead of
many extra components, you can install
CINT by typing sudo apt-get install
root-systemin a text console. Then, type
cint -help, and you should see some
help text.

Alternatively, to build and install the
latest version of CINT from source, in-
stall the Readline library and sources
with the command:

sudo apt-get install libreadline-dev

Next, download the latest source tarball
of ROOT from its download page [6] and
issue the following commands:

tar -zxvi root-version.source.tar.gz

ed root/eint
Finally, to build CINT, enter:

. /configure
make

If the compilation goes well, you should
see executables like cint and makecint in

. LISTING 4: pointertest.c

01 #include <stdio.h>
02 #include <stdlib.h>
03

o4 int main()

the bin subdirectory. To set executable
and library search paths, as well as
CINT-specific settings, you should add
the following environmental variables in
.bashre:

CINTBASE=<path of cint directory>
export CINTSYSDIR=$CINTBASE
export PATH=$CINTBASE/bin:$PATH
export LD_LIBRARY PATH=2
$CINTBASE,/1ib:$LD_LIBRARY PATH
export MANPATH=Z2?
$CINTBASE/doc: $MANPATH

Now type sudo Tdconfig in a text con-
sole to configure dynamic linker run-
time bindings.

To see CINT in action, create a file
with the contents shown in Listing 5
then type cint nellocint.cppin a text
console. To interpret C and C++ code or-
ganized in multiple files, you have to
provide CINT with a list of source files;
the last file in the list must contain the
main() function.

To run the stack example described
earlier, type cint stack.c test.c.If
CINT can’t find a main() function or any
other error, it starts an interactive ses-
sion, in which you can issue various
CINT commands.

To use the interpreted code debugging
feature of CINT, put a breakpoint on a

desired function and use the -b
option along with the list of
source code files. Now exam-
ine or change the program ex-
ecution state through various
debugging options mentioned
in CINT the man page. You

o can also see the debugging

& options by entering h at the

i1l INg ¥ phie. S IEmg Ul CINT interpreter prompt.

08

09 printf(" pPtr : Ox%0x\n", pPtr); Beyond

10 printf(" iArray[20] : %d\n", iArray[20]): c and C++

1 Interpretation

1z PPtr = malloc(57); You can use the functions pro-
18 vide by EiC to embed the

14 pPtr(79] = 7; functionality for C code inter-
15 printf(" pPtr[79] : %d\n", pPtr[79]): pretation in an external C ap-
e plication. Run a C source file
45 LAl AT = B with the function EiC_run(int
18 print£(" iArray[-8] : %d\n", iArray[-8]); arge. char **argv), where

o argc represents the number of
s b arguments passed and a rlgv

- Tepresents an array of strings
T consisting of a C source file

name along with other com-

C++ Interpreter

Cand

B LISTING 5: hellocint.cpp

01 #include <iostream>
02 using namespsce std;
a3

04 int main()

05 {

06

Q7 cout << endl

08 <<" Hello to FLOSS from
CINE! 1™

09 << endl;
Ee]

T return O;

12

13 }

mand-line arguments. To run a C code
file named myeic.c use:

char *argv = {"myeic.c", ...};
int arge = sizeof(argv)/?
sizeof(char *);

EiC_run(arge, argv);

Also, you can pass C or preprocessor
commands to EiC with the function EiC
narseString(char *command, ...).To
build apps with these functions, include
eic.h, found in the include subdirectory

I LISTING 6: mycint.hpp

Cl1 #ifndef MYCINT HPP

02 #define MYCINT HPP

03

04 #include <iostream>

05 using namespace std;

06

07 class CMakeCintDemo {

08

09 private:

10

Il int iState;

12

i3 public:

14

15 CMakeCintDemo();
16

flirg CMakeCintDema(int ivalue);
i8

19 ~CMakeCintDemo() ;
20

21 void getState() const;
22

23 };

24

25 #endif

i

C and C++ Interpreters

of the EiC source directory and link with
the 1ibeic and 1ibstdC11b libraries in
the 1ib subdirectory of the EiC source di-
rectory. To play more with the embed-
ding capabilities of EiC, follow embed
EiC.c, which is found in the main/exan
ple subdirectory of the FiC source direc-
tory.

CINT is extensible through external
functionalities that are coded in C and
C++, which means you can create cus-
tomized versions of CINT that contain
your external C and C++ functionalities
as added features. This feature of CINT
should be used to interpret source code
with custom extensions, without the
need to supply headers and additional
source files.

To embed your external functionalities
in CINT, you need Makecint. Makecint is
an interpreter compiler that is built during
the build process for CINT. Makecint au-
tomates the process of embedding exter-
nal functionalities coded in C and C+ +
implementations, and it generates the
necessary wrapper code automatically to
create your customized version of CINT.

W LISTING 7: mycint.cpp

01 #ineclude "myeint.hpp"

o2

02 CMakeCintDemo: :CMakeCintDemo() {
o4

05 cout << endl

08 << " CMakeCintDemo: :CMakeCint
Demo():this = "

o7 << hex

08 << this

09 g A

10 << endl;

11

12 }

13

12 CMakeCintDemo: :CMakeCintDemo(
int iValue):iState(iValue) {
13

16 cout << endl

17 << " CMakeCintDemo: :CMakeCint
Demo(int iValue):this = "

18 << hex

19 << this

20 << dec

21 << " iValue =

22 << iState

23 Lottt

24 << endl;

25

26 }

To try your luck with this powerful
feature of CINT, create the files shown in
Listings 6 and 7 and issue the following
command in a text console:

makecint -mk Makefile -o myeint 2
-H mycint.hpp 2

=C++ myecint.cop

The -mk switch sets the name of the
Makefile generated by Makecint, -o sets
the name of the customized version of
CINT, and -H and -C++ are switches that
let you mention the headers and sources
containing the external functionalities
you want to embed in CINT. For more in-
formation about the various options sup-
ported by Makecint, consult the man
page.

If you examine the directory listing,
you can see various additional source
and object files created by Makecint to
build your customized version of CINT.
Now, to build the customized interpreter,
just type make in the text console to cre-
ate an executable mycint in the current
directory.

27

28 CMakeCintDemo: :~CMakeCintDemo() {

30 cout << endl

b3 << " CMakeCintDemo: :~(CMake
CintDemo(}:this = "

32 << hex

a3 << this

34 e S

358 << erdl;

36

37 }

38

39 void CMakeCintDemo::getState()

const {
40
41 cout << endl
42 << " CMakeCintDemo: :
getState():thig = "
43 << hex
4 << this
45 << dec
46 <& M iState = "
47 << iState
43 G A
49 << endl;
50
51 }
52

LISTING 8: testmycint.cpp

01 int main()

o2 {

03

o4 CMakeCintDemo ¢MCT1, cMCT2(13);
as

06 eMCT2.getState();

o7

08 }

To test your newly created customized
version of CINT, run the code shown in
Listing 8 by typing . /mycint testmycint.
cpp in the text console,

Your external functionalities are now
included in the code interpreter itself.

Conclusion

C and C++ interpreters provide a big
productivity boost. These interpreters
are very helpful for C and C++ educa-
tion, as well as for quick prototyping and
experimentation with C and C++ pro-
graims.

EiC and CINT go beyond mere inter-
pretation and provide extra functional-
ities, such as tracing down the memory
limit violations at the coding stage, em-
bedding C code interpretation into exter-
nal applications, and communicating
with compiled C and C++ applications.
All these code interpreters can make C
and C++ development more productive,
more flexible, and more enjoyable. nEm

Jj INFO

111 Tec homepage: http./bellard.org/tcc/

[2] Code for this article:
http://www.linux-magazine.com/
Resources/Article-Code

[3] PicoC project page:
http://code.google.com/p/picoc/

[4] EiC project page:
http://eic.sourceforge.net

(8] ROQT: http./root.cern.ch/

[6] ROOT download page:

http://root.cern.ch/drupal/content/

downloading-root

JJAUTHOR

Ankur Kumar Sharma is a software de-
veloper and researcher who likes to play
and croon c¢lassic rock songs on his gui-
tar. He also enjoys reading self-help
books, writing, and exploring all the in-
teresting things in life. He blogs at
http:/www.richnusgeeks.com.

