Rl Vala and Genie

Good performance and easy coding

In the Bofttle

Vala and Genie yield the high performance of compiled fan-
guages with the ease and flexibility of scripts. 8y Ankur kumar

VeI'y Programmer wants maximum

performance with minimal effort.

Compiled languages like C and

C++ offer high performance and a
high degree of control, but they also re-
quire a high level of programming effort,
On the other hand, scripting languages
like Python and Ruby are easy and flexi-
ble, but often at the expense of perfor-
mance. In the case of managed lan-
guages like C# and Java, the overhead
and bloat of the virtual machines can
hamper performance.

Programmers have developed many
tools to combine the benefits of com-
piled and scripting languages, but these
solutions are mostly add-ons or alterna-
tive forms. No single alternative ad-
dresses the needs of the programmers in
one complete solution. As always, the
open source technology angels are work-
ing to address this challenge with a pair
of promising new programming lan-
guages known as Vala and Genie.

Understanding

Vala [1] and Genie [2] are modern pro-
gramming languages designed from the
ground up for the Gnome desktop envi-
ronment. The main programming lan-

MY ENVIRONMENT

1 used Puppy Linux 5.0 and Ubuntu 8.10
64-bit desktop edition to test the code
presented in the article.

guage of Gnome development is C,
based primarily on an object system pro-
vided by the GObject library. Gnome is
heavily dependent on the GLib and GOb-
ject libraries. GLib provides a portable
wrapper for many lower level functions
and data types and offers various ad-
vanced data structures. In most cases, it
is the C counterpart to the C++ standard
template library. GObject 3] is the type
and object system that provides portable
object orientation in C and offers mem-
ory management for automatic objects
through reference counting.

In Vala and Genie, the source code is
converted to a GObject-based C code
representation first, then to the host plat-
form-specific executable code. A Vala
compiler does the conversion then in-
vokes the platform-specific C compiler to
produce the final executable. This design
deviates from the prevalent one compiler,
one syntax phenomenon used with other
programming languages. The syntax of
Vala is inspired by C# and Java, and the
syntax of Genie is inspired by Python:
your choice of which language is just a
matter of taste and convenience.

Figure 1 shows the scheme for

creating executables
from Vala and Genie
sources.

Language
bindings

are available to several third-party librar-
ies for Vala and Genie. The only prereq-
uisites for working with Vala and Genie
are the Gnome development libraries
and C run-time libraries, which are avail-
able wherever the Gnome development
environment is present. So, you don’t
need any extra performance-dampening
run-time components like virtual ma-
chines or extra run-time libraries. This
hybrid development provides the pro-
ductivity and flexibility of managed lan-

l LISTING 1: hellovala.vala

01 int madin()

g2 {

03

o4 stdout.printf("\n Hello to
FLOSS from Vala!!l!\n"):

05 return 0;

08

07 }

guages with the run-time performance of
compiled languages. The run-time per-
formance of both Vala and Genie is at or
near the performance of C.

Installing
To work with both Vala and Genie, you
need the Vala compiler, valac. If you
don’t care about the latest version,
issue the following command to install
valac on Ubuntu:

sudo apt-get install valac

Both Vala and Genie are in continuous
development. For the latest version of
valac, build and install it from the latest
source tarball using bison, flex, GCC,
and GLib sources. On Puppy Linux, all
the prerequisites are fulfilled when you
set up the development environment
with the devx SFS module. On Ubuntu,
issue the command

4YHEZI 'A2Jepnq [1BURIN

sudo apt-get install gee #
1libglib2:0-dev bison flex

then download the latest Vala compiler
source tarball from the Vala homepage
and issue the following commands to
build and install valac;

tar jxvi vala-version.tar.bz2 @
&& cd vala-version

./oconfigure && make &k sude make install

If everything goes well, valac --help
will show the valac help text.

Playing with Vala

To compile the hellovala.vala file (List-
ing 1) enter valac heilovala.vala, then
type ./hel7ovala. By default, valac gives
the executable the same name as the
Vala source file, but you can name the
executable yourself by appending the o
executablename option.

To generate only the intermediate C
source file (instead of the executable),
pass the - option to valac. If you exam-
ine the generated C source file, you will
notice the GObject-based C program-

W LISTING 2: datatypes.vala

01 /** Data types in Vala %/
0z

03 void printwln(string sMsg) {

o4

08 stdout.printf("\n %s", sMsg);

06

o7 }

08

08 void main() {

10

11 var ulSizelnt = sizeof(int);

12 string sSizeInt = @"sizeof(int)
13 printwln(sSizelInt);

14

15 int iMax = int.MAX;

18 var iMin = int.MINj

abrd var sMaxInt = @"int.MAX : $iMax",
i8 var sMinInt = @"int MIN ; $iMin";
19 printwin(sMaxInt);

20 printwln(sMinInt);

a1 printwin("");

22

23 ulong ulSizeInt8 = sizeof(int8);
24 string sSizeInt8 = @"sizeof(ints)
25

26 printwln(sSizeInts);

27 stdout.print£("\n uint8.MAX ; %u"

L

and Genie

Vala

ming. With the -v option,
valac invokes the C com-
piler and links to the GLib
and GObject libraries to
generate an executable
from the intermediate C file.
Vala provides the various
basic data types, depending
on the underlying platform.
It also provides ways to
know the maximum and
minimum values repre-
sented by various data
types. The stdinand std-
oul. objects give you con-
sole-mode functionalities.
A string data type han-
dles immutable strings, If
you want to work with mu-

libglib

Intermediate C
code

table strings, you have to
instantiate StringBuilder,
and you can use various methods, such
as append, prepend, and insert, on the
mutable strings. Vala also contains a type
inference mechanism that lets you define
a local variable with var instead of pro-
viding a type if the variable is unambigu-
ous, Listing 2 shows data types, string

, wint8,MAX);

Figure 1: Executable generation from Vala and Genie.

types, and the type inference in action.
ma1n returns void, so the return value is
0 on execution. The /** */-style com-
ments are not specific to Vala, but the
Vala documentation generation utility
Valadoc [4] treats these comments in
special ways.

28 stdout.printf("\n uint8.MIN : %u\n", uintg.MIN):
22
30 ulong ulSizelnt64 = sizeof(intey);
31 string sSizelntsd = @"sizeof(inted) : $ulSizelntsu™;
32 printwln(sSizeInted):
33 printwln("");
34
35 var sVerbatim = """\nThis is the example of verbatim
string
36 that goes three lines down\\
37 \tand then closes.""";
. sulSizeInt"; 38 stdout.printf("\n %s\n", &Verbatim);
39
40 var sGnu = "GNU is a recursive acronym.";
41 string sFloss = "Free Libre Open Source Software
ralztiin;
42 string sCmbnd = sGnu + " " + sFloss;
3 stdout.printf("\n sGnu.up() ¢ %s", sGrnu.up());
uy stdout.printf("\n sFloss.reverse() : %s\n",
sFloss.reverse(});
45 stdout.printf("\n sCmbnd.len(} : %1d", sCmbnd.len{));
48 stdout.printf("\n sCrbnd.size{) : %zd",
sCmbond. size());
¥
¢ $ulSizeInts"; ug printwlnl"\n");
49
50 }

nt nain (string[] =gs) {
Bk, Init(raf argsd;

ver uirdow = rey Yindow(UincouTupe . TIPLEVEL):
i GTK+ sarple in Vale®;

window,title =
windou.sst_cefault_size(300, 50):
window,pasition = UlndowPosition,DENTER;
wlrdou,destroy 4= Gtk.aain_quit;

var button = rew Butten.with label(" Hit ne um foss peskl®);
button.clicked.conect {(scurce) => [

source.Jabal = " GT%+ loves Vala.'
3H

uindou ad (button) ;
windou,show_all(};

Figure 2: Curses and Gtk applications created with Vala.

If you want to use various collection
objects like lists, hash maps, and sets,
you have to install libgee. To build and
install it, download the latest source tar-
ball from the homepage [5] and issue the
command:

tar jxvf libgee-version.tar.bzz @2

&& cd libgee-version
To build and install libgee, type:
./configure && make && sudo meke install

If everything compiles without error, you
are ready to add collection classes in
your Vala programs. To see Vala collec-
tions in action, compile the collactions,
vala code provided in the Article Code
archive [6] with

valac --pkg=gee-1.0 collections.vala

and note the similarity to C++ contain-
ers and C# or Java collections.

To debug Vala code snippets, use GDB.
Compile your Vala code with additional

q --save-temnns switches, then launch
the executable with GDB to debug. To
help with debugging, the generated in-
termediate C files (from the
temps switch) contain a line-by-line
mapping of Vala and C code.

The Vala language supports powerful
object-oriented programming around
various Gnome-based objects. The vari-
ous classes derived from GLib’s 0bject
class can take full advantage of GObject.
All the objects are instantiated in Vala

Ssave

through the new keyword - as in C# and
Java - and Vala automatically cleans the
various objects by reference counting.
Vala doesn’t provide multiple inheri-
tance.

Properties in a class defined with the
get and set methods can work as acces-
sors and mutators while keeping the
class data private:

! LISTING 3: testcurses.vala

01 using Curses;
02

08 int main(string[] args) {

o4

05 initser();

06

07 start_color();

08 init_pair(1l, Color.RED,
Color.CYAN);

09

10 var win = new Window(LINES - 8,

COLS - 8, %, 4);

B LISTING 4: testoop1.gs

¢l [indent = 4]
o2

03 class GOopl : GOop
o4

05 prop iV : dint

06 prop dV : double
Q7

08 init

09 this.iV = 8

10 this.av = 7.89C
11

12 construct(ival : int, dVal :

private int _ivaly

public int ival {

ival; }

set { _iVal = value; dval *= 2; }

get { return

value in the <ot mutator is the value as-
signed to public property ivVal.

The type of object at run time be-
comes known, with the name method of
the Type reference returned by the get.
tvpe method inherited in the object:

public static void main() {
var voopl = new VOopl(3.14);
Type type = voopl.get_type()
stdout.printf(2@
"\n voopl.get_type() : %s\n", 2
type.name());

Vala doesn’t provide method overload-
ing, so you can’t declare and define mul-
tiple functions and constructors with the
same name and different signatures, but
named constructors provides overloaded
constructors, which lets you give differ-
ent name additions to overload various
constructors. Also, you can chain con-

11 win.bkgdset(COLOR_PAIR(1) |
Attribute.BOLD)

12 win.addstr(" Hello to Curses
from Vala!");

13 win.elrtebot();

14 win.getch();

15

1ie endwin();

L return Q0;

18

18 3

double)

13 iv = ival

14 dv = dval

15

16

17 def getStatel()

18 pring N\a iV © %4, oV 5 %E\at,
iv, av
19
20 def setStatel(iVal : int, dVal :
double)
21 setState(ivVal, dval)

structors to cne another. Vala also pro-
vides destructors for the very rare cases
when you manage memory manually
with pointers. Vala does a nullability
check on function parameters and return
values. This feature is like static check-
ing to prevent run-time errors, like deref-
erencing a null reference. If you want
any function parameter or return value
to be null, use mociiier ? with the pa-
rameter or the return value. When you
work with multiple Vala source files to
create executables, if you supply just the
file names to valac, it figures out a way
to connect different pieces of code to
generate the executable.

The curses example in Listing 3 re-
quires the ncurses headers. To see the
system bindings available by default in
Vala, compile with the command

valac --pkg curses -X @

~lncurses testcurses.vala

then run the executable (Figure 2).

A basic Gtk programming sample in
Vala (Figure 2, lower right) can give you
some feeling for Gnome programming.

Genie Time
Now it is time to rub the valac magic
lamp and call Genie. If you prefer Py-
thon and want to finish big programs
with little effort, you will love Genie,
which provides the ease of Python syn-
tax and the performance of GLib- and
GObject-based C code.

Although many Vala features are
equally applicable to Genie, Genie does
a few things differently [7]. For instance,

LISTING 5: testoop2.gs

01 [indent = &]
oz

03 class GOop : Object
o4

085 prop iV : int

06 prop _dV : double
a7

08 init

09 _iv = 7

10 _dav = 3,14

il

12 def getState()

T3 print ™\n iV :
_iv, _av

%d, _a4v : %f\a",

14

15 det setState(iVal : int, dVal ;

Init
Gtk,init (ref args)
ver test = rau TestUlrdsu()
test, shou_all()
Gtk main()s
iosg Tostlindow : Uindas

utl,a L sarple in Genla*
_heis - 250

=250
ulrdmjusitlm Umnpalltlﬂ'\ LCENTER

= Gtk
buw.n cu\:ked += defltny
itla

* Hello ta GTK+ fron Gaﬂis
tn. _.R;ai. = * Hollo to GTK+ from Gan

ault
= nes Mtnrl uith_labal(" Hit =e you foss geek:!®)

Style:
Qajitvu 6 : # Back
Dingbats Oblique

| Bold ablique

Nimbus Mona L
Nimbus Rorman Ned L
Nimbus Sans L

Ereview:

abcdefghilk ABCDEFGHIJK

Munujﬁua

titls = rs:t B FontSalect ionDislop |*
default_he n
defauli_y.
u.mhunsiti u!.n:!:uPosnmn.cEmER
destrog += tk nain LUl
Lebol = new Lecel(* GNCHE and Eenls rockz 111%)
o erton o su-um atén1ebal(‘Crarge Text Font")
Bittcn.cliceed v= i
Var EURtonZ = row Bt o, Stoc
buttend, elinked 4= Gt Iul.n uun)

vbon = new VBex
label, S
pack_start|)]

muu pu:k,jstal-t outiod, falss, tris, 0)

daf chi fort ()
Unrw?:ifmlc- rau FontSsle

Figure 3: Gtk appl:cations created with Genie.

Genie doesn’t use curly braces to create
code blocks; by default, it uses Tabs. Tab
behavior can be changed with indenta-
tion (as in Python) by putting [indent=
wmber of spaces| at the top of Genie
source files.

In Genie, execution starts in the init
block, not in ma in. To see the Python-like
compactness of Genie code compared
with Vala code, compile and run the fol-
lowing code:

[indent=4]

init

print "Hello to FLOSS from Genie!!!"

Genie syntax for variable and function
declarations is slightly different from
Vala, with the variable format variable:

double)
16 _i¥ = ival
17 LAV = aval
18
19 init

20 var goop = new GOop()

22 goop.getState()

24 goop.setState(89, 56,789)

25 goop.getState()

27 var goopl = new GOopl(
56, 89,456837)

28 goopl.getStatel ()

type —if you don’t use a type inference —
and the format for functions is funct?

{parameter:type,

return vﬁ
Geme classes can have only one i

block as a constructor. The init block
outside of a class works as main. If you
precede class members with an under-
score or the private keyword modifier,
they become private; otherwise, class
members are public by default.

A construct block sets various proper-
ties of a class by supplying parameters at
construction time. To try the object-ori-
ented concepts provided by Genie, com-
pile the programs shown in Listings 4
and 5 with

valac -o testoop testoopl.gs 2
testoop2.gs

and run the testoop executable.
Listings 4 and 5 also demonstrate
some concepts introduced earlier with
Vala, such as singular superclass inheri-
tance, properties, and code in multiple
files. To see the Genie version of a basic
Gtk + application, compile testgtk, gs

valac --pkg gtk+-2.0 testgtk.gs

E LISTING 6: classgenie.gs

01 [indent=4]

02

03 class Ggenie : Object
o4

05 def prntInfoGenie(
info : string)

06 print "\n Ggenie :: %s\n", info

i

i

Vala and Genie

i LISTING 7: classvala.vala

01 class V¥vala : Ggenie
02 {
03

04 void pratInfoVala(string info) {

08

08 stdout . printf(“\n Vvala ::
%s\n", info);

o7

08 }

Q9

10 public static void main() {
11

and run the testqtk executable (Figure
3, upper left).

The next Gtk + example, taken from
the Genie examples site [8], explores the
font selection dialog functionality of
Gtk + in Genie (Figure 3, lower right).

Mixing Vala and Genie
Because both Vala and Genie are con-
verted into the same intermediate C code
by valac, you can seamlessly mix them
in one application. Therefore, you can
write a function in Genie and use it in
Vala, or you can write a class in Vala and
use its properties and methods in Genie.
A small example to derive a class de-
fined in Vala from a superclass defined
in Genie and invoke inherited and class
methods is shown in Listings 6 and 7. To
compile, enter

valac -0 valagenie classvala.vala 2

classgenie.gs
and run the valagenie executable.
Missing Bytes

Although I have focused primarily on
the functionalities of the GLib, GObject,

“E:enchmark C++
mandelbrot 14.48
partialSums 32.68
recursive 12.87
binaryTrees 2783
sumFile 16.90
fannkuch 11.18
spectralNorm 32.77
nsieve 25.49
nBody 28.33

\TABLE 1: Performance Comparison of Vala

12 var ovala = new Vvala();

13

14 ovala.prntInfoVala("Calling
method of vala class from vala
class.");

15

18 ovala.prntInfoGenie("Calling

method of genie class from
vala class.");

17
18 }
19

20 }

and Gnome libraries, Vala and Genie
also prove their merit in other environ-
ments. If you want to target only the C
run-time library with Vala and Genie,
use the valac - -profile=pas’x option to
create the executables. Vala and Genie
can replace direct C programming in em-
bedded systems or in systems that re-
quire very small executables. If you gen-
erate intermediate C code or executables
for some Vala and Genie programs with-
out using Gnome resources, you will see
that valac generates very efficient C
code. With the use of alternate light ver-
sions of libc and static linking, you can
create very tiny and self-contained na-
tive executables in Vala and Genie.

Performance

The performance of Vala and Genie pro-
grams is equal or similar to equivalent C
programs. Although Vala syntax is simi-
lar to C# and Java, it doesn’t come with
the run-time penalties associated with
Mono/CLR or JVM. Similarly, Genie has
marvelous syntax inspired from Python,
but it does not suffer the performance
overhead of CPython or Mono/CLR. An
independent Google Code project imple-

C#

47.40 12.38 13.05
56.58 35.11 34.92
28.15 8.38 8.61
42.62 21.56 30.75
2370 14.18 15.24
28.59 12.26 14.23
46.58 32.83 36.84
29.31 26.08 25.70
43.55 26.02 28.06

ments The Computer Language Bench-
marks Game in Vala [9] and compares
performance against C, CG++, and C#,
Table 1 shows the results published on
the benchmarks project page using

Gee-4.3.4, Mono C# compiler 2.4.2.3
and
valac-0.7.86.

Clearly, Vala provides a performance
level equivalent to C in all the bench-
marks [9].

Conclusion

Vala and Genie are modern program-
ming languages that promise high pro-
ductivity, flexibility, and native perfor-
mance without a large number of run-
time libraries or run-time engines like
virtual machines. They were primarily
designed around the Gnome libraries
and provide Gnome developers excellent
programming alternatives. However,
Vala and Genie are suitable for non-
Gnome areas targeting libc as well. mmm

NFO

Vala homepage:

http/Alive.gnome.org/Vala

{21 Genie homepage:
http./live.gnome.org/Genie

{31 GObject Wikipedia page: http:/en.
wikipedia.org/wiki/GObject

[4] Valadoc homepage:
http:/ive.gnome.org/Valadoc

5] libgee homepage:
http:/live.gnome.org/Libgee

[6] Code used in this article:

http:/www.linux-magazine.com/

Resources/Article-Code

[7]1 Genie tutorial from the founder of
Puppy Linwx hitp//bkhome.org/
genie/index.html

[8] Vala and Genie examples:
http://code.valaide.org

[2] Vala benchmarks: hitp/code.google.
comy/p/vala-benchmarks

JJAUTHOR

Anlwr Kumar Sharma is a software de-
veloper and researcher. He likes to play
and croon classic rock songs on his gui-
tar, read seli-help books, write, and ex-
plore many interests in his spare time. He
blogs at www.richnusgeeks.com.

